Кейс: Контентный проект под США. От 0 до 190 000 посетителей в сутки (Апдейт кейса)

Подробнее

Кластеризация семантического ядра. Зачем, где, как? – На Доске – выпуск № 177 с Олег Шестаков

SeoProfy

В сегодняшнем выпуске На Доске про семантику и структуризацию ключевых слов для сайта.

О том, что такое кластеризация семантического ядра. Зачем нужно кластеризировать и как это можно сделать.

Кластеризация семантического ядра. Зачем, где, как? – На Доске – выпуск № 177 с Олег Шестаков

Про это рассказывает Олег Шестаков, основатель Rush Analytics.

Видео получилось довольно таки объемным. В нем основные нюансы связанные с кластеризацией.

Переходим к просмотру видео:

Фото с доски:

Фото с доски: Кластеризация семантического ядра. Зачем, где, как? – На Доске – выпуск № 177 с Олег Шестаков

Важно: Если у вас есть вопросы, то смело задавайте их в комментариях. Олег с удовольствием на них ответит.

Расшифровка видео

1. Что такое кластеризация?

Кластеризация по методу подобия топов — это группировка ключевых слов на основе анализа выдачи поисковых систем. Как это происходит?

  • Берем два запроса, например, «блеск для губ» и «купить блеск для губ».
  • Собираем для каждого из запросов поисковую выдачу, сохраняем 10 url из каждой выдачи и проверяем, есть ли общие url в обеих выдачах.
  • Если есть хотя бы 3-5 (в зависимости от точности кластеризации, которую мы зададим), то эти запросы группируются.

2. Зачем делать кластеризацию?

Почему тренд кластеризации на рынке уже около полутора лет? Почему это важно и как это поможет?

  • Экономия времени. Кластеризация — замечательная технология, которая поможет сократить рутину при работе с группировкой семантического ядра. Если обычный специалист по семантическому ядру разбирает 100 000 ключевых слов, отделяя их на группы, порядка 2-3 недель (а то и больше, если сложная семантика), то кластеризатор может это разделить в порядке очереди примерно за час.
  • Позволяет избежать ошибки продвигать разные запросы на одну страницу. В Яндексе есть классификаторы, которые оценивают коммерческие запросы. Например, выдача по информационным запросам и коммерческим — совершенно разная. Запросы «блеск для губ» и «купить блеск для губ» никогда не получится продвинуть на одну страницу.

1) По первому запросу («блеск для губ») стоят сайты информационной тематики (irecommend, Википедия). Под этот запрос нужна информационная страница.

2) По второму запросу («купить блеск для губ») — коммерческие ресурсы, известные интернет-магазины. Под этот запрос нужна коммерческая страница.

То есть под разные запросы нужны разные типы страниц. Частая ошибка отимизатора — когда он продвигает все вместе на одну страницу. Получается так, что половина семантического ядра выходит в ТОП-10, а вторая половина никак не может туда попасть. Кластеризатор позволяет избежать таких ошибок.

Для того чтобы так не происходило, нужно изначально правильно сгруппировать запросы по типам страниц по выдаче.

3. Как кластеризация помогает в продвижении?

  • скорость обработки данных,
  • классификация страниц, под которые делается продвижение.

Если структура сайта сгруппирована и внутренняя оптимизация сделана правильно, то это уже половина дела, если мы говорим о российском рынке. Под западные рынки, естественно, потребуются ссылки. По нашему опыту, где-то 50-60% запросов при правильной кластеризации и правильной текстовой оптимизации просто выходит в ТОП без какого-либо внешнего вмешательства. Для интернет-магазинов либо классифайдов (агрегаторов и порталов) в принципе даже не нужны и тексты.

Кластеризация — залог правильного ранжирования. На данный момент нет смысла бороться с ранжированием поисковой системы, а проще подстроиться под это ранжирование, войти в нужные типы страниц и успешно продвигаться. Сменить парадигму продвижения какой-то тематики — скорее нереально, чем реально.

4. Какие есть методы кластеризации? (Hard/Soft)

Soft — это то, что было описано ранее. Берется маркерный запрос какой-то категории интернет-магазина, к нему привязываются другие запросы, сравнивается выдача. «купить блеск для губ», «купить блеск для губ в москве», «купить блеск для губ цены» — они имеют с главным запросом 4-5 связей.

Эти запросы привязываются. На этом проверка заканчивается, получается кластер ключевых слов и его можно продвигать.

Но есть тематики более конкурентные, например, пластиковые окна. Здесь нужно проверить, чтобы все запросы, которые были привязаны к главному, могли быть продвинуты друг с другом.

Нужно сравнить, есть ли в выдаче по этим запросам

одинаковый url. Сравниваем выдачу не только с главным запросом, но и между собой. И группируем только те запросы, которые могут быть связаны между собой.

Для большинства случаев хватает Soft кластеризации. Это интернет-магазины (не очень конкурентные категории), информационные ресурсы.

Для конкурентных тематик рекомендуем делать Hard кластеризацию.

5. Кластеризация в Rush Analytics

У нас есть модуль кластеризации и 3 типа кластеризации:

  • По Wordstat. Самый простой и менее затратный по времени с точки зрения оптимизатора метод. Идеально подойдет для ситуаций, когда мы не знаем о структуре сайта практически ничего.

1) В Excel загружаете в одну колонку ключевые слова, в другую — частотность по Wordstat, и отправляете на кластеризацию.

2) Мы сортируем весь список по убыванию: наверху получаются самые частотные слова (обычно самые короткие).

3) Алгоритм работает так: мы берем первое слово, пробуем привязать к нему все остальные слова, группируем. Все, что привязалось, вырезаем, делаем сортировку заново и опять повторяем эту итерацию.

4) Из списка ключевых слов мы получаем набор кластеров.

По маркерам

Подходит для сайтов, где структура определена. Очень хорошо работает в e-commerce (например, интернет-магазины).

1) Мы знаем маркерный запрос (основной запрос страницы или несколько запросов, под которые она продвигается).

2) Мы берем список ключевых слов, в колонке справа единицами отмечаем маркерные запросы, и нулями — все остальные запросы.

3) Мы берем маркерное ключевое слово и пытаемся привязать к нему остальные ключевые слова и сгруппировать в кластеры. Здесь важно, что в этом алгоритме маркерные слова, которые мы пометили единичками, никогда не будут связаны между собой. Мы не будем пытаться их привязать.

Комбинированная кластеризация

Этот алгоритм совмещает в себе два предыдущих

1) Мы загружаем ключевые слова, отмечаем «маркер/не маркер» и частотность.

2) Привязываем к маркерным запросам все слова, которые мы можем привязать.

3) Берем ключевые слова, которые остались не привязанными, и группируем их между собой по Wordstat.

4) Все остальное откинется в «некластеризованные».

5) В итоге — структура, которую мы уже знаем. Также получится автоматическая кластеризация всех остальных ключевых слов, что поможет нам расширить структуру. Все эти типы кластеризации есть в Rush Analytics.

Какие еще есть инструменты на рынке?

Из достойных, кроме Rush Analytics, можно выделить сервис JustMagic, где есть и Hard и Soft кластеризация. Сервис разработал Алексей Чекушин.

Это все, что вам нужно знать о кластеризации, чтобы начать работу по группировке ключевых слов.

Используйте кластеризацию и экономьте свое время. К тому же, люди часто ошибаются, процент ошибок оптимизатора — порядка 15%. Доверьте рутину роботам — не нужно разбирать это руками.

Хорошие статьи в продолжение:

Как сделать семантическое ядро сайта — пошаговое руководство

Подбор ключевых слов для англоязычного сайта — пошаговое руководство

А что вы думаете по этому поводу? Давайте обсудим в комментариях!)

Оцените статью

совсем плохоплохонормальнохорошокласс (14 оценок, средняя: 4,57 из 5)
Загрузка...